tensorflow入门示例 发表于 2018-05-30 | 逻辑回归分类示例1234567891011121314151617181920212223242526272829303132333435363738import tensorflow as tf"""Mnist by tensorflow """# 通过Tensorflow自带模块,加载Mnist数据集 from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)# Tensorflow依赖于高效的C++后端来进行计算,与后端的连接叫做session,一般是先构建图,然后在session中启动它# 更方便的是InteractiveSession类,可以在运行图的时候,动态构建图sess = tf.InteractiveSession()# 占位符# 我们通过为输入图像和目标输出类别创建节点,来开始构建计算图。x = tf.placeholder("float", shape=[None, 784])y_ = tf.placeholder("float", shape=[None, 10])# 变量 w 为一个[784.10]的矩阵,b是一个10维向量w = tf.Variable(tf.zeros([784, 10]))b = tf.Variable(tf.zeros([10]))# 变量初始化sess.run(tf.global_variables_initializer())# 实现softmax回归模型y = tf.nn.softmax(tf.matmul(x,w)+b)# loss:整个Mini batch的交叉熵cross_entropy = -tf.reduce_sum(y_*tf.log(y))# BP算法# 返回的train_step对象,运行时会使用梯度下降来更新参数,整个模型的训练通过反复运行train_step来进行train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)# 开始反复训练for i in range(1000): batch = mnist.train.next_batch(50) # feed_dict 用数据替换张量x, y_ sess.run(train_step, feed_dict={x:batch[0], y_:batch[1]})# 模型评估prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))# 将上面返回的bool数组转换为float,用以计算准确率accuracy = tf.reduce_mean(tf.cast(prediction, "float"))Acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})print ("Accuracy: ", Acc) CNN分类示例1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)sess = tf.InteractiveSession()x = tf.placeholder("float", shape=[None, 784])y_ = tf.placeholder("float", shape=[None, 10])# CNN网络训练时需要随机初始化权重# tf.truncated_normal(shape, mean, stddev) shape表示生成张量的维度,mean是均值,stddev是标准差# 截断正态分布函数,产生正态分布的值如果与均值的差值大于两倍的标准差,那就重新生成def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial)def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # 用0.1赋值的常量def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# patch 大小5*5W_conv1 = weight_variable([5, 5, 1, 32])b_conv1 = bias_variable([32])x_image = tf.reshape(x, [-1,28,28,1]) # reshape_1,batch*W*H*Ch_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)h_pool1 = max_pool_2x2(h_conv1)W_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)h_pool2 = max_pool_2x2(h_conv2)W_fc1 = weight_variable([7 * 7 * 64, 1024])b_fc1 = bias_variable([1024])h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # reshape_2 变为1维向量h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)keep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 添加一个占位符,在train、test中灵活改变keep_prob比例W_fc2 = weight_variable([1024, 10])b_fc2 = bias_variable([10])y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# 模型其他参数cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))sess.run(tf.global_variables_initializer())for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0}) print ("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # 循环往复执行优化计算Acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})# 也可使用Tensor.eval() 和 Operation.run() 方法代替 Session.run()# print (accuracy.run(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))print ("test accuracy", Acc)