tensorflow入门示例

逻辑回归分类示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
"""
Mnist by tensorflow
"""
# 通过Tensorflow自带模块,加载Mnist数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Tensorflow依赖于高效的C++后端来进行计算,与后端的连接叫做session,一般是先构建图,然后在session中启动它
# 更方便的是InteractiveSession类,可以在运行图的时候,动态构建图
sess = tf.InteractiveSession()
# 占位符
# 我们通过为输入图像和目标输出类别创建节点,来开始构建计算图。
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
# 变量 w 为一个[784.10]的矩阵,b是一个10维向量
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# 变量初始化
sess.run(tf.global_variables_initializer())
# 实现softmax回归模型
y = tf.nn.softmax(tf.matmul(x,w)+b)
# loss:整个Mini batch的交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# BP算法
# 返回的train_step对象,运行时会使用梯度下降来更新参数,整个模型的训练通过反复运行train_step来进行
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# 开始反复训练
for i in range(1000):
batch = mnist.train.next_batch(50)
# feed_dict 用数据替换张量x, y_
sess.run(train_step, feed_dict={x:batch[0], y_:batch[1]})

# 模型评估
prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
# 将上面返回的bool数组转换为float,用以计算准确率
accuracy = tf.reduce_mean(tf.cast(prediction, "float"))
Acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print ("Accuracy: ", Acc)

CNN分类示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
# CNN网络训练时需要随机初始化权重
# tf.truncated_normal(shape, mean, stddev) shape表示生成张量的维度,mean是均值,stddev是标准差
# 截断正态分布函数,产生正态分布的值如果与均值的差值大于两倍的标准差,那就重新生成
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) # 用0.1赋值的常量
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# patch 大小5*5
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1,28,28,1]) # reshape_1,batch*W*H*C

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # reshape_2 变为1维向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 添加一个占位符,在train、test中灵活改变keep_prob比例

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 模型其他参数
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print ("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # 循环往复执行优化计算
Acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
# 也可使用Tensor.eval() 和 Operation.run() 方法代替 Session.run()
# print (accuracy.run(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
print ("test accuracy", Acc)